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Stability of a hard-core fluid jet of small 
electrical conductivity 
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The stability of a hard-core fluid jet is investigated under the assumption of small 
electrical conductivity of the fluid for parallel and antiparallel current systems. 
For axisymmetric deformations the parallel current has a destabilizing influence 
whereas the antiparallel current improves the stability of the configuration. 
However, for non-axisymmetric deformations characterized by m = 1, it  is 
shown that the jet becomes unstable in general, both for parallel and anti- 
parallel current systems. The presence of an external conductor has been shown 
to have a stabilizing influence on kink instability. 

1. Introduction 
The problem of stability of the hard-core fluid jet is of considerable interest in 

plasma confinement and has been investigated in recent years (Anderson, Baker, 
Ise, Kunkel, Pyle & Stone 1958; Anderson, Furth, Stone &Wright 1958; Colgate 
& Furth 1959, 1960; Jukes 1961; Reynolds et al. 1959). It has been shown on 
theoretical grounds that with the assumption of ideal conductivity of the fluid, 
the hard-core plasma jet is stable when the currents are antiparallel and the total 
current in the jet is less than that in the core. However, experiments have 
revealed it to be unstable at sufficiently high current densities. In  an earlier 
paper Tandon & Talwar ( 1  961) investigated the stability of the hard-core model 
of the pinch under the other extreme condition, i.e. vanishingly small electrical 
conductivity, the fluid being incompressible and inviscid. They found that a 
current in the core in the same direction as that in the liquid has, in general, a 
destabilizing influence, whereas an antiparallel current improves the stability 
of the configuration, a result not arrived at by Lehnert & Sjogren (1960) in their 
experimental investigation with liquid mercury. The above investigation (Tandon 
& Talwar), based on energy arguments, was restricted to include only sausage 
type (m = 0 )  disturbances. The present note is concerned with a generalized study 
so as to include non-axisymmetric disturbances and also the effect of an external 
conductor. It is found that the configuration is, in general, unstable both for 
parallel and antiparallel current systems for kink-type disturbances (m = 1). 
The external conductor has no influence on sausage perturbations (m = 0 )  but 
has a stabilizing influence on kink instability for long-wave perturbations. 
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2. Formulation of the problem 
The model adopted is as shown in figure 1, where the fluid is confined between 

a metallic core of radius R, and a rigid perfectly conducting wall of radius R,. 
The core (insulated from the fluid by a thin sheath) carries a total axial current 
Ie and the fluid a corresponding current I which can be reversed in axial direction 
independentZy of the current in the core. The corresponding current densities' 
are denoted by j ,  ( = IJ77-R;) and j ,  ( = 1/77-(R: - R;)), respectively, where Bl is 
the outer radius of the fluid jet. 

FIGURE 1. The metallic core (radius R,) is insulated by a thin sheath (dotted line) from the 
fluid conhed to the region R, t o  R,. R, represents the radius of the external conducting 
wall. j ,  and j ,  denote the current densities in the core and the fluid jet, respectively. 

Assuming the fluid to be inviscid and incompressible, the basic equations can 

(1) 

v.u = 0, (2) 

V . H  = 0, (3) 

V x H  = 477-j (4) 

( 5 )  

V W  = 0. (6) 

be written as pau /a t+p(u .V)u  = -Vp+j x H ,  

and 

Equation (5) ,  in the limit of vanishingly small conductivity, reduces to 

aH/at = V x (U x H )  + (1/4714 V2H.  

12-2 
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The equilibrium configuration is defhed by the equations 
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and 

VP, = jl x Hl, 
V x H = 4rjl 

V.H = 0, 

and is characterized by the following expressions for magnetic field: 

H, = (0,2nj,r, 0 )  ( r  < Ro); (10a) 

H, = (0 ,  2 r ~ - ~ [ j ~ r ~ + R ~ ( j , - j , ) ] ,  0 )  ( lob)  
H, = (0 ,  2nr-1[j1Rz+R~(j,-j1)], 0 )  (r 2 R). (10c) 

(R, < r < R); 

It follows from equation (7) that the fluid jet has a tendency to detach itself 
from the core in the antiparallel current system. This tendency is assumed to be 
arrested by an appropriate externally applied gas pressure. The hydrodynamics 
of this medium is not taken into account since it does not involve any new physical 
feature in the stability criterion in our present context (see Appendix). 

In  order to investigate the stability of the static situation depicted in figure 1,  
we impart a small perturbation of the first order of smallness, the result of which 
is to change the free boundary of the fluid into the form 

r = R + a(t)  cos q5, ( 1 1 )  

( 1 2 )  

where q5 = - m8 + kx and a(t)  is of the form a, eid. Conservation of mass per unit 
length of the cylinder leads to 

It should be noted that in the approximation considered here the difference 
between R, and R can be ignored. Let the corresponding changes in current 
density, magnetic field and pressure be denoted by Sj, h($) and Sp respectively 
inside the fluid and h(e) external to the fluid. We shall calculate the expressions 
for these perturbations in terms of the amplitude a of the boundary displacement. 
With the help of suitable boundary conditions we derive finally in 9 5 an expres- 
sion for the dispersion relation. 

R2 - R2 + 1 -  

3. Perturbation in current density and magnetic field 
For a fluid of vanishingly small conductivity, from equation (6), it  follows that 

V2h@) = 0,  (13) 

so that Sj is irrotational and derivable from a scalar function $. Assuming no 
accumulation of charge it follows that 

= 0. 
Solution of equation (14) gives 

(14) 

1c. = [Cllm(kr) + CzKm(kr)] sin q5 (15) 

and Sj, = k[C,lk(kr) + C, Kk(kr)] sin q5, (16a) 

Sj, = -mr-l[CIIm(ET)+CzKm(kr)] cosq5, (16b) 

Sj, = k[C,fm(kr)+C,Km(kr)]cosq5. (16c) 
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Here I;, and K ,  are modified Bessel functions of the first and second kind and 
primes denote their first derivatives with respect to kr. Coupling of equations 
(16) with 

leads to the following expression for the components of ho: 

V x h(0 = 4 7 4  (17) 

hp) = [ - (4nm/kr)(C,I;,(kr)+C,K;,(kr))+C3I;(kr)+C4K:,(kr)]sin$, (18a) 

h f )  = [4n(C, l~(kr)  + C,K&(kr)} - (m/kr) (CI1,Im(kr) + C, K,(kr)}] cos $, (18b) 

(18c )  h p  = [C,I,(kr) +C,K;,(kr)] cos $. 

The perturbation in the external magnetic field is irrotational and derivable 
from another scalar function x. Using V . h@ = 0 we get 

(ii) Tangential components of H are continuous a t  r = R, and 

(iii) Normal component of field is continuous at r = R, and also at 
r=R+acos$ .  

r=R+acos$ .  

The condition at r = R, determines the field inside the core, 
assuming the thickness 6 of the insulating sheath to be in- 
finitesimally small. 

v2x = 0. 
The solution of equation (19) is 
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Here, 

where x o =  ICR,, x =  ICR and xz=ICR,. 

4. Perturbation in pressure 
From equations (1) and (2) we get 

V2p = - 4nj: - Snj, Sj,. (31) 

Here j = j,+Sj, H = H,+h(i) (32) 

and p =p,+Sp, where Sp, = ucosq56p(r). (32a) 

Thus, using equations (16c), (23) and (24), we have 

V’SP = $nICjf[PmlIm(kr) -pm2Km(kr)l. (33) 

Solution of equation (33) gives 

= alm(kr)  +PKm(kr)  + @‘j:r[pmlIk(kr) -pm2Kk(kr)l. (34) 

To evaluate the constants a and p occurring in equation (34) we apply the 
following boundary conditions 

(i) Pressure should be continuous at r = R + u cos 9. 
(ii) Equation to  be satisfied at  T = R, is 

since hp) = 0 at r = R,. 



5. Dispersion relation 

which, with the help of equation (7), gives at r = R + a cos q5, 
In order to obtain the characteristic equation for w, we go back to equation (l), 

(37) pw; a cos q5 = -l+ asp j ,  hg) + Hl Sj,. ar 

Using equations ( l o b ) ,  (16c) ,  (18b),  (23)-(26), (32a), (34) and (36) in equation 
(37) we get the following dispersion relation: 

6. Discussion of dispersion relation 
In order to decide whether the configuration is stable or not we have to look 

at the sign of w; in expression (38), which should be positive for stability. To 
ascertain this, the numerical calculations for & with m = 0 and 1 are done taking 
R = 2R0 and R2 = 2R. 

For the case m = 0,  it is clear from expression (38) that the external conductor 
has no influence on the stability of the configuration. The results for this case 
are presented in figure 2 for &/I = 2,  0 and - 2 (curves a, b, c respectively). It 
follows from the figure that the configuration is unstable for parallel current 
system and even when there is no current in the core (curves a, 6 ) .  The anti- 
parallel current system is, however, stabilizing in nature as is shown by the 
curve c. These conclusions were earlier arrived at by Tandon & Talwar, following 
energy arguments. 
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FIGURE 2. The dependence of e$ on x. Curves a, b, D refer to Ic/I  = 2, 0, - 2, respectively. 

FIGURE 3. The dependence of u: on 2. Curves a, b, c refer to I, /I  = 2, 0,  - 2, respectively, 
in the absence of an external conductor. The effect of external conductor ia shown by the 
dotted curves a', b', G', respectively. 
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Figure 3 shows the variation of the parameter uk as a function of x (=  kR) 
in the case m = 1 with &/I = 2 , O  and - 2 (curves a, b, c respectively referring to 
the case of no external conductor). It is evident from the figure that the con- 
figuration is unstable both for parallel and antiparallel current systems for kink 
instability. Further, the antiparallel current system is stabilizing in nature for 
perturbations characterized by small wavelengths whereas for long-wave per- 
turbation the growth rate is enhanced in antiparallel current systems over 
parallel current systems. The effect of an external conductor is exhibited by the 
dotted curves which show that the external conductor has a stabilizing influence 
for long-wave perturbations, a result already established in problems of plasma 
confinement. 

We conclude, therefore, that the configuration of an antiparallel current 
system, stable under the hydromagnetic approximation (infinite electrical 
conductivity), does not remain so in the limit of vanishingly small conductivity. 

One of us (J. N. T.) is grateful to the University Grants Commission, India, for 
the award of a Senior Research Fellowship. 
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Appendix 
Let us assume that the region R, to R2 is filled by an inviscid, incompressible 

fluid of zero electrical conductivity and is characterized by a pressure high 
enough to arrest any tendency of the detachment of the plasma from the core 
in the antiparallel current system. For an incompressible fluid, the equation of 
motion 

(A 1) 
a+) __ = -vs (4 P 

2 at 

where p2 is the density of the external fluid. 
Equation ( 2 )  has a solution of the form 

6 ~ ~ " )  = [AI,(kr) + BK,(kr)] cos $. 
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cbntinuity of the normal component of velocity (derived from equations (1) 
and (3)) at r = R + a cos 9 and at r = R2 yields 

and 

daa,  

Proceeding exactly as before, and using the condition of continuity of pressure 
at the physical interface (Y = R + a cos q5), we get the following modified dispersion 
formula: 

A comparison of this equation with (38) shows that the only modification to 
the dispersion relation due to the presence of the surrounding fluid is through the 
term involving pz},ol. The coefficient of this term can readily be seen to be always 
negative for 0 6 x,, 6 z and x 6 x2 < co, and hence the term in parentheses 
with 0.); is always greater than unity. Thus we conclude that the configuration 
of the antiparallel current system is unstable even in the presence of external 
gas, the growth rate of the instability being diminished, however, by its presence. 


